MACROBRACHIUM AMAZONICUM:
ACUTE TOXICITY TO NITROGEN COMPOUNDS

Garçon, D.P.1,*; Freitas, R.S.1; Lucena, M.N.2; Fabri, L.M.3; Moraes, C.M.3; McNamara, J.C.4 & Leone, F.A.3

1 Universidade Federal do Triângulo Mineiro (UFTM), Campus Iturama.
2 Universidade Federal do Mato Grosso do Sul (UFMS), Campus Campo Grande.
3 Universidade de São Paulo (USP), Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química.
4 Universidade de São Paulo (USP), Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Biologia.
*Autor correspondente: danielapgarcon@yahoo.com.br

The Amazon River shrimp Macrobrachium amazonicum is widely distributed throughout South America, is amply exploited by artesian fisheries, and shows elevated potential for aquaculture investment: To establish the lethal critical concentration of total ammonia and nitrite after 96 h (LC$_{50}$-96 h). Adult shrimps were collected from the Rio Grande River, state of Minas Gerais, Brazil, near the Água Vermelha Dam. Individual shrimps (N=10) were exposed to 7 concentrations of ammonium chloride (30, 60, 120, 170, 200, 250 or 300 mg.L$^{-1}$) for 96 h or 5 concentrations of sodium nitrite (20, 30, 40, 50 or 60 mg.L$^{-1}$). Six replicate experiments were performed. The LC$_{50}$ after 96 h exposure was calculated using a Probit analysis, and was adjusted employing a linear regression (P≤0.05). The LC$_{50}$ calculated after 96 h exposure of M. amazonicum was 54.27 mg.L$^{-1}$ total ammonia or 30.75 mg.L$^{-1}$ nitrite. Based on these findings we recommend a safe level of 5.427 mg.L$^{-1}$ total ammonia and 3.075 mg.L$^{-1}$ nitrite for aquaculture production. Intraspecific genetic and physiological variation among M. amazonicum populations may explain the difference in LC$_{50}$-96 h seen between the shrimp population cultivated in the Rio Grande River and those cultivated at other facilities.

Keywords: acute toxicity; ammonia; nitrite; Macrobrachium amazonicum.

Financial support: FAPEMIG, CNPq, FAPESP, FAPEAM, INCT-ADAPTA.